Camshafts And Crankshafts Explained The Simple Way

The job of the crankshaft is to convert the vertical movement from the pistons into a rotation, which transfers energy to the flywheel and the transmission. The crankshaft
uses ‘crankpins’ along its length, which are lined up horizontally to form the ‘stepped’ orientation of the shaft itself.

The crankpins are positioned to allow each cylinder to travel from Top Dead Centre to Bottom Dead Centre and back, transmitting the movement into the shaft’s rotation. The connection between the pistons and the crankpins is through rods connected to the crankpins.

Most of an engine’s power losses occur in the crankshaft area through heat, vibration, noise and friction. In an effort to minimise power losses, engineers try to shorten a crankshaft’s length as much as possible. This is one of the reasons why V-shaped engines grew in popularity compared to in-line engines, as they use a relatively small and controllable crankshaft setup to minimise power losses.

A DOHC and crankshaft in their respective positions

Camshafts and crankshafts are crucial for an engine’s cycle as they are used in the inlet stroke and the exhaust stroke, keeping the different mechanical processes of each cycle in perfect harmony through their belted connection. They may seem like machined billets of steel, but they play an essential role in providing power to a vehicle’s wheels.

Source: Read Full Article